Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493481

RESUMO

Pegylated interferon alpha (pegIFNα) can induce molecular remissions in JAK2-V617F-positive myeloproliferative neoplasms (MPN) patients by targeting long-term hematopoietic stem cells (LT-HSCs). Additional somatic mutations in genes regulating LT-HSC self-renewal, such as DNMT3A, have been reported to have poorer responses to pegIFNα. We investigated if DNMT3A loss leads to alterations in JAK2-V617F LT-HSCs functions conferring resistance to pegIFNα treatment in a mouse model of MPN and in hematopoietic progenitors from MPN patients. Long-term treatment with pegIFNα normalized blood parameters, reduced splenomegaly and JAK2-V617F-chimerism in single-mutant JAK2-V617F (VF) mice. However, pegIFNα in VF;Dnmt3aΔ/Δ (VF;DmΔ/Δ) mice worsened splenomegaly and failed to reduce JAK2-V617F-chimerism. Furthermore, LT-HSCs from VF;DmΔ/Δ mice compared to VF were less prone to accumulate DNA damage and exit dormancy upon pegIFNα treatment. RNA-sequencing showed that IFNα induced stronger upregulation of inflammatory pathways in LT-HSCs from VF;DmΔ/Δ compared to VF mice, indicating that the resistance of VF;DmΔ/Δ LT-HSC was not due to failure in IFNα signaling. Transplantations of bone marrow from pegIFNα treated VF;DmΔ/Δ mice gave rise to more aggressive disease in secondary and tertiary recipients. Liquid cultures of hematopoietic progenitors from MPN patients with JAK2-V617F and DNMT3A mutation showed increased percentages of JAK2-V617F-positive colonies upon IFNα exposure, whereas in patients with JAK2-V617F alone the percentages of JAK2-V617F-positive colonies decreased or remained unchanged. PegIFNα combined with 5-azacytidine only partially overcame resistance in VF;DmΔ/Δ mice. However, this combination strongly decreased the JAK2-mutant allele burden in mice carrying VF mutation only, showing potential to inflict substantial damage preferentially to the JAK2-mutant clone.

2.
Blood Adv ; 8(5): 1234-1249, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207211

RESUMO

ABSTRACT: JAK 2-V617F is the most frequent somatic mutation causing myeloproliferative neoplasm (MPN). JAK2-V617F can be found in healthy individuals with clonal hematopoiesis of indeterminate potential (CHIP) with a frequency much higher than the prevalence of MPNs. The factors controlling the conversion of JAK2-V617F CHIP to MPN are largely unknown. We hypothesized that interleukin-1ß (IL-1ß)-mediated inflammation can favor this progression. We established an experimental system using bone marrow (BM) transplantations from JAK2-V617F and GFP transgenic (VF;GFP) mice that were further crossed with IL-1ß-/- or IL-1R1-/- mice. To study the role of IL-1ß and its receptor on monoclonal evolution of MPN, we performed competitive BM transplantations at high dilutions with only 1 to 3 hematopoietic stem cells (HSCs) per recipient. Loss of IL-1ß in JAK2-mutant HSCs reduced engraftment, restricted clonal expansion, lowered the total numbers of functional HSCs, and decreased the rate of conversion to MPN. Loss of IL-1R1 in the recipients also lowered the conversion to MPN but did not reduce the frequency of engraftment of JAK2-mutant HSCs. Wild-type (WT) recipients transplanted with VF;GFP BM that developed MPNs had elevated IL-1ß levels and reduced frequencies of mesenchymal stromal cells (MSCs). Interestingly, frequencies of MSCs were also reduced in recipients that did not develop MPNs, had only marginally elevated IL-1ß levels, and displayed low GFP-chimerism resembling CHIP. Anti-IL-1ß antibody preserved high frequencies of MSCs in VF;GFP recipients and reduced the rate of engraftment and the conversion to MPN. Our results identify IL-1ß as a potential therapeutic target for preventing the transition from JAK2-V617F CHIP to MPNs.


Assuntos
Transtornos Mieloproliferativos , Animais , Camundongos , Animais Geneticamente Modificados , Transplante de Medula Óssea , Células-Tronco Hematopoéticas , Interleucina-1beta , Transtornos Mieloproliferativos/genética
3.
Blood Adv ; 8(9): 2312-2325, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295283

RESUMO

ABSTRACT: Hyperproliferation of myeloid and erythroid cells in myeloproliferative neoplasms (MPN) driven by the JAK2-V617F mutation is associated with altered metabolism. Given the central role of glutamine in anabolic and catabolic pathways, we examined the effects of pharmacologically inhibiting glutaminolysis, that is, the conversion of glutamine (Gln) to glutamate (Glu), using CB-839, a small molecular inhibitor of the enzyme glutaminase (GLS). We show that CB-839 strongly reduced the mitochondrial respiration rate of bone marrow cells from JAK2-V617F mutant (VF) mice, demonstrating a marked dependence of these cells on Gln-derived ATP production. Consistently, in vivo treatment with CB-839 normalized blood glucose levels, reduced splenomegaly and decreased erythrocytosis in VF mice. These effects were more pronounced when CB-839 was combined with the JAK1/2 inhibitor ruxolitinib or the glycolysis inhibitor 3PO, indicating possible synergies when cotargeting different metabolic and oncogenic pathways. Furthermore, we show that the inhibition of glutaminolysis with CB-839 preferentially lowered the proportion of JAK2-mutant hematopoietic stem cells (HSCs). The total number of HSCs was decreased by CB-839, primarily by reducing HSCs in the G1 phase of the cell cycle. CB-839 in combination with ruxolitinib also strongly reduced myelofibrosis at later stages of MPN. In line with the effects shown in mice, proliferation of CD34+ hematopoietic stem and progenitor cells from polycythemia vera patients was inhibited by CB-839 at nanomolar concentrations. These data suggest that inhibiting GLS alone or in combination with inhibitors of glycolysis or JAK2 inhibitors represents an attractive new therapeutic approach to MPN.


Assuntos
Benzenoacetamidas , Glutaminase , Hematopoese , Janus Quinase 2 , Transtornos Mieloproliferativos , Animais , Camundongos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Hematopoese/efeitos dos fármacos , Humanos , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Benzenoacetamidas/farmacologia , Benzenoacetamidas/uso terapêutico , Mutação , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
4.
J Thromb Haemost ; 22(1): 172-187, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37678548

RESUMO

BACKGROUND: Neutrophils participate in the pathogenesis of thrombosis through the formation of neutrophil extracellular traps (NETs). Thrombosis is the main cause of morbidity and mortality in patients with myeloproliferative neoplasms (MPNs). Recent studies have shown an increase in NET formation (NETosis) both in patients with JAK2V617F neutrophils and in mouse models, and reported the participation of NETosis in the pathophysiology of thrombosis in mice. OBJECTIVES: This study investigated whether JAK2V617F neutrophils are sufficient to promote thrombosis or whether their cooperation with other blood cell types is necessary. METHODS: NETosis was studied in PF4iCre;Jak2V617F/WT mice expressing JAK2V617F in all hematopoietic lineages, as occurs in MPNs, and in MRP8Cre;Jak2V617F/WT mice in which JAK2V617F is expressed only in leukocytes. RESULTS: In PF4iCre;Jak2V617F/WT mice, an increase in NETosis and spontaneous lung thrombosis abrogated by DNAse administration were observed. The absence of spontaneous NETosis or lung thrombosis in MRP8Cre;Jak2V617F/WT mice suggested that mutated neutrophils alone are not sufficient to induce thrombosis. Ex vivo experiments demonstrated that JAK2V617F-mutated platelets trigger NETosis by JAK2V617F-mutated neutrophils. Aspirin treatment in PF4iCre;Jak2V617F/WT mice reduced NETosis and reduced lung thrombosis. In cytoreductive-therapy-free patients with MPN treated with aspirin, plasma NET marker concentrations were lower than that in patients with MPN not treated with aspirin. CONCLUSION: Our study demonstrates that JAK2V617F neutrophils alone are not sufficient to promote thrombosis; rather, platelets cooperate with neutrophils to promote NETosis in vivo. A new role for aspirin in thrombosis prevention in MPNs was also identified.


Assuntos
Armadilhas Extracelulares , Transtornos Mieloproliferativos , Neoplasias , Trombose , Trombose Venosa , Humanos , Camundongos , Animais , Neutrófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Neoplasias/metabolismo , Transtornos Mieloproliferativos/genética , Janus Quinase 2/genética , Trombose Venosa/metabolismo , Aspirina
5.
J Vis Exp ; (171)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34096917

RESUMO

Bone marrow megakaryocytes are large polyploid cells that ensure the production of blood platelets. They arise from hematopoietic stem cells through megakaryopoiesis. The final stages of this process are complex and classically involve the bipotent Megakaryocyte-Erythrocyte Progenitors (MEP) and the unipotent Megakaryocyte Progenitors (MKp). These populations precede the formation of bona fide megakaryocytes and, as such, their isolation and characterization could allow for the robust and unbiased analysis of megakaryocyte formation. This protocol presents in detail the procedure to collect hematopoietic cells from mouse bone marrow, the enrichment of hematopoietic progenitors through magnetic depletion and finally a cell sorting strategy that yield highly purified MEP and MKp populations. First, bone marrow cells are collected from the femur, the tibia, and also the iliac crest, a bone that contains a high number of hematopoietic progenitors. The use of iliac crest bones drastically increases the total cell number obtained per mouse and thus contributes to a more ethical use of animals. A magnetic lineage depletion was optimized using 450 nm magnetic beads allowing a very efficient cell sorting by flow cytometry. Finally, the protocol presents the labeling and gating strategy for the sorting of the two highly purified megakaryocyte progenitor populations: MEP (Lin-Sca-1-c-Kit+CD16/32-CD150+CD9dim) and MKp (Lin- Sca-1-c-Kit+CD16/32-CD150+CD9bright). This technique is easy to implement and provides enough cellular material to perform i) molecular characterization for a deeper knowledge of their identity and biology, ii) in vitro differentiation assays, that will provide a better understanding of the mechanisms of maturation of megakaryocytes, or iii) in vitro models of interaction with their microenvironment.


Assuntos
Células Progenitoras de Megacariócitos , Megacariócitos , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Separação Celular/métodos , Células-Tronco Hematopoéticas/citologia , Células Progenitoras de Megacariócitos/citologia , Megacariócitos/citologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA